
How 95% Confidence Interval (CI) of HPC QPF Absolute Error (AE) and  
CI of HPC QPF are computed  

 
 
Background 
HPC produces a suite of deterministic 6-hour Quantitative Precipitation Forecasts (QPFs) 
out through three days.  These forecasts represent the forecasters’ best effort at predicting 
the most likely amount of QPF. These forecasts have been produced for over 40 years 
and verification statistics show a steady, gradual improvement.  The skill of these 
forecasts varies significantly with season, weather regime, forcing function, and forecast 
time. For example, skill in forecasting a synoptic scale overrunning event is usually better 
than convective events. 
 
While these forecasts have proven to be useful as they are, they offer no information 
concerning the skill of individual forecasts. Many users have expressed a need for an 
objective way of assessing the likely success of a particular forecast. 
 
Introduction 
All QPFs have uncertainty.  The availability of ensemble forecasts have allowed 
forecasters to better assess the uncertainty of a particular model run. By running an 
ensemble of models with differing physics or initial conditions, forecasters have a better 
feel for the sensitivity of a particular model run to initial conditions or model physics and 
can therefore better assess the level of confidence they can place in a particular model 
run. Unfortunately, it is difficult for forecasters to subjectively use the ensemble output to 
quantify this uncertainty. 
 
This project is an attempt to objectively quantify the level of confidence that is justified 
in a particular HPC subjective QPF forecast by relating errors in HPC QPFs to ensemble 
spread.  In general, the larger the spread, the greater will be the uncertainty of a particular 
forecast. 
 
Overview 
Several parameters available from the Short Range Ensemble Forecasts (SREFs) were 
compared to the errors in HPC forecasts.  While there was little correlation between HPC 
QPF absolute errors (AE) and SREF spreads for 500mb height, 850mb temperature, and 
850 and 700mb relative humidity, the best correlation was found to be with the spread of 
the SREF QPF. 
 
We then derived a relationship between the SREF QPF spread at a given forecast time 
and gridpoint to the AE in the HPC QPF for that point using linear regression.  The 
Quantitative Precipitation Estimates (QPEs) used for verification were obtained from the 
National Precipitation Verification Unit (NPVU). The relationship obtained is applied to 
the current HPC 6-hourly QPF to determine the estimated error in the forecast. The 95% 
confidence intervals of HPC QPF and HPC QPF AE are also calculated. 
 



This is an ongoing project and is still in its early stages.  The results are posted for 
evaluation by potential users.  The techniques will continue to undergo refinements based 
on verification results and user feedback. 
 
Methodology 
The first step was to find a relationship between the desired quantity, the absolute error 
(AE) of the HPC forecast, and a known quantity such as the spread from the SREF.  The 
purpose of this approach is to quantify the uncertainty in the manually produced HPC 
QPF.  Our experimental study indicates that HPC QPF AE is highly correlated with 
ensemble QPF spread.  The linear regression of HPC QPF AE on ensemble QPF spread 
can be written in the form: 
 

|RFC_QPEij – HPC_QPFij | = b0ij + b1ij SPij, 
                                                         ↑ 
                                                      “AE ij” 
where RFC_QPE is the observed precipitation (i.e., ground truth), HPC_QPF is the HPC 
precipitation forecast, b0 is the intercept, b1 is the slope, and SP is the ensemble QPF 
spread.  The subscripts i and j address the horizontal position of each grid point. 
For a given set of nij grid points (SPijk, AEijk), it is possible to find the intercept b0ij and 
slope b1ij that minimize sum of squared errors for multiple times addressed by index k.  
The regression is done with k varying and i, j fixed.  The solution set is  
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where S(SP*AE) is the sum of cross products (i.e., Σ (SPijk− ijSP )(AEijk− ijAE ) ), SS(SP) 

is the sum of squares for SP (i.e., Σ (SPijk− ijSP )2 ), AE  is the mean AE, and SP is the 
mean SP. 
 
Now we want to estimate a future value of AEij given the ensemble spread SPij that is 
within, or at least near, the range of SP’s in our data. 
The general form of a confidence interval (CI) [e.g., Wilks, 1995; Steel et al., 1997] for 
the predicted AE at SPo is given by 
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where SPo is the SP value for the individual point we are trying to predict, n is the 
number of data points, MSE is the mean squared error (i.e., MSEij= = 
[SS(AE)

2
SPAEs ⋅

ij−b1ij*S(SP*AE)ij]/[nij−2]; Its square root is sometimes referred to as the 
standard error of estimate or the standard deviation of AE at a fixed SP), and  t is the 
appropriate percentile of the t distribution with degrees of freedom (df) equal to the error 
degrees of freedom, n−2 for a simple linear regression.  For example, if we are computing 



95% prediction interval, we let t=1.960 for df=∞ … t=2.086 for df=20, etc.  When we 
compute the minimum (i.e., lower boundary of the confidence interval, b0 + b1*SPo − 
t ) and maximum (i.e., upper boundary of the confidence interval, b0 + b1*SPo + 

t ), we can say we are 95% confident that HPC QPF with SP=SPo will have AE 
between the minimum value and the maximum value. 
 
In addition, we can estimate 95% CI of HPC QPF by solving the equation (1) for the 
HPC QPF.   Equation (1) can be re-written as the following:  
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After moving the HPC_QPF term to the right-hand side and rearranging the equation, CI 
of HPC QPF can be written in the form: 
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Choosing the positive (negative) sign in equation 3 yields the maximum (minimum) 
expected precipitation for the upper (lower) CI bound associated with the HPC QPF, SP0, 
and t value.  While the level of confidence associated with the t value is appropriate for 
the AE CI estimates, the same degree of confidence may not apply to HPC QPF CI 
estimates (in particular, degrees of confidence lower than 95%) because the largest 
possible interval is selected for equation 3. 
 
In order to construct the CI, we usually assume the deviations of the observed AE’s from 
the true fitted line (i.e., true errors, εijk) satisfy the following assumptions. 
 
1. They all have mean 0. 
2. They all have the same variance. 
3. They are uncorrelated. 
4. They are normally distributed. 
 
To test our data sets satisfy the above assumptions, the estimates of ε (the deviations of 
the observed AE’s from the fit line; residuals) were computed and examined.  First, it 
was demonstrated that the methodology used for the first step approach satisfy the 
assumptions 1 and 4.  Second, all the MSEs (estimates of the variance of ε) computed for 
HPC_QPF categorized subsets were not the same.  Especially, the MSEs computed for 



the wet QPF categorized subsets (QPF≥0.01 inch) were much greater than the MSE for 
dry QPF subset (0≤QPF<0.01 inch). To address different MSE causing problems 
(overestimate / underestimate) for dry and wet precipitations, we performed the following 
experiments for CI computations.  The new regression model equation parameters (i.e., 
slope, intercept, MSE, number of data points, mean spread, sum of squares for spread, 
etc.) derived using new stratification methodology were applied to CI computations and 
then the CI forecast results were evaluated.   
 
(1) Method 0 (Dry/All Regressions) 

• For Dry QPF (i.e., QPF = 0) CI forecast: Apply the regression model equation 
parameters derived using the previous year data of 0 ≤ QPF < 0.01 inch.  
• For Wet QPF (i.e., QPF > 0) CI forecast: Apply the regression model equation 
parameters derived using the previous year data of QPF ≥ 0. 

(2) Method 1 (Dry/Wet Regressions) 
• Dry QPF (i.e., QPF = 0): Apply the regression model equation parameters derived 
using the previous year data of 0 ≤ QPF < 0.01 inch.  
• Wet QPF (i.e., QPF > 0): Apply the regression model equation parameters derived 
using the previous year data of QPF > 0. 

(3) Method 2 (Dry/Light/ModerateHeavy Regressions)  
• Dry QPF (i.e., QPF = 0): Apply the regression model equation parameters derived 
using the previous year data of 0 ≤ QPF < 0.01 inch.  
• Light QPF (i.e., 0 < QPF < 0.1 inch): Apply the regression model equation 
parameters derived using the previous year data of 0 < QPF < 0.1 inch. 
• Moderate/Heavy QPF (i.e., QPF ≥ 0.1 inch): Apply the regression model equation 
parameters derived using the previous year data of QPF ≥ 0.1 inch. 

(4) Method 3 (Power Transforming Regressions) 
• Dry QPF (i.e., QPF = 0): Apply the regression model equation parameters derived 
using the previous year data of 0 ≤ QPF < 0.01 inch.  
• Wet QPF (i.e., QPF > 0): Apply the regression model equation parameters obtained 
from the logarithmically transformed data for QPF > 0. 

(5) Method 4 (15 QPF Categorized Regressions)  
• Dry QPF (QPF = 0): Apply the regression model equation parameters derived using 
the previous year data of 0 ≤ QPF < 0.01 inch.  
• Wet QPF 1 (0.00 < QPF < 0.10): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 0.10 inch. 
• Wet QPF 2 (0.10 ≤ QPF < 0.25): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 0.25 inch. 
• Wet QPF 3 (0.25 ≤ QPF < 0.50): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 0.50 inch. 
• Wet QPF 4 (0.50 ≤ QPF < 0.75): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 0.75 inch. 
• Wet QPF 5 (0.75 ≤ QPF < 1.00): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 1.00 inch. 
• Wet QPF 6 (1.00 ≤ QPF < 1.25): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 1.25 inch. 



• Wet QPF 7 (1.25 ≤ QPF < 1.50): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 1.50 inch. 
• Wet QPF 8 (1.50 ≤ QPF < 1.75): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 1.75 inch. 
• Wet QPF 9 (1.75 ≤ QPF < 2.00): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 2.00 inch. 
• Wet QPF 10 (2.00 ≤ QPF < 2.50): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 2.50 inch. 
• Wet QPF 11 (2.50 ≤ QPF < 3.00): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 3.00 inch. 
• Wet QPF 12 (3.00 ≤ QPF < 4.00): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 4.00 inch. 
• Wet QPF 13 (4.00 ≤ QPF < 5.00): Apply the regression model equation parameters 
derived using the previous year data of 0 < QPF < 5.00 inch. 
• Wet QPF 14 (5.00 ≤ QPF < infinite): Apply the regression model equation 
parameters derived using the previous year data of 0 < QPF < infinite. 
 

Result 
Method 4 (15 QPF Categorized Regressions) was proven to be the best methodology 
satisfying high hit rate and reasonable confidence interval range.  As of March 29, 2004, 
Method 4 implementation was done for real time confidence interval forecasts for the 
HPC QPF and HPC QPF absolute error.  The verification statistics for Method 4 to 
address reliability and consistency are now available upon request. 
 
Upgrade 1 (09/20/2004) 
We developed an algorithm that is to combine Method 0 and Method 4.  When the MSE 
of Method 4 for each HPC QPF category is greater (less) than the threshold value of 
[QPFmax/t_value]2, the regression parameters derived from Method 0 (Method 4) are 
applied to the computation of CI forecasts.  The verification statistics indicate 
improvements in the CI sizes (significantly reduced CI size in light rain ranges), while 
showing ignorable changes in hit rates.  Since September 20, 2004, this method has been 
implemented to the real time CI forecasts.   
 
Upgrade 2 (12/13/2006) 
On December 13, 2006, new scheme was implemented to 1) deliver the CI forecast 
products approximately five hours earlier than previously, 2) adapt more quickly to 
changes in the operational SREF, and 3) use information more relevant to the current 
weather regime.  The differences between old and new schemes are summarized in the 
following table. 
        
 
 
 

New Scheme 
Compute Regression parameters  

each day using most recent 3 month data 
and then apply to CI computations 

 
Use 03z and 15z cycle SREF 

Previous Scheme 
Compute Regression parameters 

each season and then 
apply to CI computations 

 
Use 09z and 21z cycle SREF



Ongoing work 
We are making these products available for users for preliminary evaluation and hope 
they will provide feedback to the HPC.  We are also verifying these forecasts to 
determine their accuracy, calibration, and reliability. 
 
We expect to improve the reliability of the product by increasing the amount of data used 
in deriving the relationship between SREF spread and possibly modifying the techniques 
used to apply these relationships to the HPC forecast.  We will also be modifying the 
display of this data based on user feedback.  


	Upgrade 1 (09/20/2004)
	Upgrade 2 (12/13/2006)
	Ongoing work

